STUDY OF DISTURBANCE FRONT PROPAGATION
IN MULTILAYERED MEDIUM

M. A. Guliev

We examine the propagation of a disturbance front in a multilayered medium separated by locally
permeable zones. Relations are derived which make it possible to determine for different regimes the po-
sition of the moving boundary and the pressure at the outer impermeable boundary. It is shown that for
certain values of the layer parameters the disturbance front may not reach the natural boundary, It is
found that if the disturbance front propagates to the outer boundary, then at this boundary there is a limit-
ing value of the pressure after which it will not change. Formulas are obtained for finding the limiting
length of the disturbance front and the limiting value of the pressure at the outer boundary.

The study of disturbance front propagation in liquid and gas motion in a multilayered medium is of
great importance in hydrogeology, and also in the exploitation of oil and gas deposits [1, 2]. The exact
mathematical study of these questions involves tremendous difficulties, Even for the simplest problems,
which are amenable to exact solution, the formulas obtained are complex in form and it is very difficult
to carry out numerical calculations using them and draw any practical conclusions. Therefore, the de-
velopment of special approximate methods [2-4] and the use of computers for the solution of liquid and gas
flow problems in multilayered media are particularly important [5-7].

Assume a battery of wells, replaceable by a gallery, is put into operation with the constant flowrate
g in a semi-infinite stratum of thickness h and permeability k, At the initial time the pressure at any point
of the stratum is constant and equal to p,. The stratum floor is considered impermeable. Above this
stratum there extends another stratum, which is separated from the first by a relatively impervious layer
and has the constant pressure p°. The relatively impermeable layer between the strata contains locally
permeable zones, It is assumed initially that there is only a single locally permeable zone of width (a;—ay)
with permeability k* and thickness b*,

For the exact mathematical solution of this problem we must integrate the differential equation

ap 0% 1 dp :
Wt = e (1)

for the two-dimensional region with the boundary and initial conditions
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Ehé—izqfor 2=0, p=po for t=0

(2)

The piezoconductivity ® and the other coefficients are assumed to be constant.

The described problem is solved using approximate methods, the essence of which is that the entire
region is broken down into perturbed and unperturbed zones, The pressure distribution law in the per-
turbed zone is specified, and in the unperturbed zone it is taken to be the original distribution law [2-4].
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- g; ' P We examine the first pressure redistribution phase, and the

distribution law in the disturbed zone is taken in the form

g z\?
'} " P=Po—-m(1——l—> (3)

This equation satisfies the conditions 8p/9x=0, p=p, for
x=1().

70
20w b Here [ {t) is the disturbance front length measured from the
Fig. 1 gallery, and u is the liquid viscosity.

The quantity [ (t) in (3) is found from the material balance
equation.

Let dqq be the liquid mass withdrawn by the gallery during the time interval dt. Then
dg, = qdt (4)
The amount of liguid obtained as a result of elastic storage is found from
9, = BHL (p — ps°) (5)
Here B is the elastic capacity coefficient of the stratum and liquid,

On the basis of (3) the weighted mean pressure p.¢ is found in the form
I
Py’ = po— g’g‘fl (6)
From (5) and (6) we obtain

dgy = - i (7)

As is known, the question of account for the amount of fluid which leaks from one stratum into the
other is important in the solution of flow problems in multilayered media [2].

Let the amount of fluid leaking through the locally permeable zone of the relative impermeable layer
during the time interval dt be dq;. Then

d k*
Tgf‘-—_‘* Qy= ;_[q 1% (@ — a1) — L (8" — &%) + /5 (2" — @], &= EhhF (8)

In obtaining (8) we have assumed that p,=p°=0. We see from (8) that the amount of crossflow fluid
depends not only on the parameters of the active stratum, but also on the parameters of the relatively im-
permeable layer. Since

dqy = dg, - dgs (9)

we obtain from (4), (7), and (8)

ldl
wdt = 30—y al L[ (az — a1) — 1 (a2 — 1) +» T (@ — e} (10)

Thus we have obtained the differential equation for determining the unknown I (t) when the relatively
impermeable layer has only a single locally permeable zone of width (a;—ay). Integration of (10) in the lim-
its from 0 to t and from 0 to I, respectively, leads to the expression

=~

K

ut t B C -+ 3102 (49— a;) — Bl B — B2 — a¥) (a; —ar) | L(B-- A)—2C
2

W @m—ay T8 @m—a) ™ c 1852 (@, — @t A "I B—A4) =

A={[6 + 3a (a? — a)]2 — 1202 (2> — ;%) (g, — a)}'®
B =6 -+ 3a (a3 — a;2), € = a (et — a? (11)

This equation makes it possible to determine the position of the moving boundary for any time, If
we consider the distribution law (3) as well, we can find the pressure at any section of the stratum being
exploited at any time.
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We note that limiting regimes have been found in the study of fluid motion in multilayered media [2].
It has been established that for certain values of the parameters of the relatively impermeable layer and
the exploited stratum, the disturbance front may not reach the natural boundary of the stratum. In other
words, the limiting position of the disturbance front depends on the permeability and thickness of the stratum
and of the less permeable layer, The existence of a disturbance front propagation limit was first shown
by Polubarinova~Kochina in [8]. Further, if the parameters of the stratum and less permeable layer are
such that the disturbance can reach the impermeable outer boundary of the stratum, there will be a limiting
value of the pressure at the outer boundary, after which the pressure will not change, The idea of the ex-
istence of a limiting value of the pressure impermeable boundary was first proposed by Hussein-zade [2].

Approximate methods and computers have been used to determine, respectively, the maximal dis-
turbance front travel and the limiting pressure at the outer impermeable boundary for various cases [9].

The limiting value of the disturbance front propagation for the case in question here is found from (10)

6+ 3% (@7 — a1?) + {6 + 31 (a5 — &%) — 1222 (g, — as?}"" (12)

!, =
* bx (a3 — a1)

From the formulas presented above, we can find the solutions for the case in which there is a fluid
crossflow along the entire length of the relatively impermeable layer. To do this we substitute a;=0 and
as=1 into the formulas obtained above. Then

_ 6
Ly="VEa",  1P=—1—exp(—2nat)]

These results coincide with the formula of [2]. Thus, we have obtained formulas which make it pos-
sible to determine the pressure at any section of the stratum at an arbitrary time for the case in which the
disturbance has not yet reached the outer boundary of the stratum,

If the condition is specified at the boundary
p=py for z=0
then the solution of the described problem is obtained in the form

! B 30 (2, — az) @ -+ G — Bl B? — 632 (0 — ar%) (a2 — ay) , (B -+ A)—2C

w=—z (22 — a1) T m—w ln [ 1832 (a3 — a1)*A In 5 (B—A)—20C (13)

Formula (13) is obtained for
P = po — (Po — Ps) (1 — 2/1)? (14)

Equation (14) satisfies the conditions

p=p, for z=1(Q), p=op; for z=0
The limiting value of the disturbance front length for this case is also found using (12).

It follows from these formulas that, regardless of the operating regime, the maximal travel of the
boundary of the disturbed and undisturbed zones has the same expression. However, this limiting distance
is reached at different times for each of the cases in question. Actually, we see from (11) and (13) that the
maximal value of the disturbance front length, when operating in the constant pressure regime, is reached
twice as fast as in the constant flowrate regime. This circumstance is also of practical interest in that
after a definite period of time the gallery will be essentially supplied only by the upper stratum, located
above the relatively impermeable layer,

We note that there are no terms characterizing the pressure change through the thickness of the
stratum in the pressure distribution relations used or in the approximate formulas used in [2] to solve
flow problems in a multilayered medium. This is explained by the fact that under natural conditions the
permeability of the relatively impermeable layer is much less than that of the stratum being exploited [2].
Therefore, for very large values of the ratio k/k* we can neglect the pressure change in the vertical di-
rection. Figure 1 presents the results of computer experiments conducted for

p* = 90atm , p°= 40 atm, ps = 20atm,, ¢; =3m

a;=6m, k* 1 k= 0.2 [ = 33m, k= 15m, p* = 3m
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where p* is the pressure in the injection gallery, and p« is the pressure in the active gallery,

The results shown in Fig., 1 were obtained for an analogous case with steady flow, We see from
Fig. 1 that even for k=5k* the equipotential lines will be nearly straight. The accuracy of the approximate
methods used has been evaluated several times [2, 9, 10].

If the disturbance reaches the outer boundary of the stratum, the second redistribution phase starts.
Then
1 () = L = const, Po = P, (£) = vaz

Here L is the distance from the gallery to the outer edge of the stratum, and p_(t) is the pressure
at the outer impermeable boundary of the stratum.

Proceeding as above, we can find that

dgy = —PhLPy dpg, (15)
dgg = 5oLt [L? (a3 — a1)— L (ag® — a) - Y5 (ag® — a)] dt (16)

Using (4), (15), (16) and considering (9), we obtain
gdt {1 — YpaL ™V [L2 (g, — ag) — L (02 — a;%) + Y5 (ag® — 0O} = —PhLdp,, 17
Integration of (17) in the limits from p, to p., and from 0 to t, respectively, leads to the solution

t 3
P =0 — Gz {t 7 [ 00— ) — L (a2 — ) + 252§ (18)

If the fluid leaks along the entire length of the relatively impermeable layer, we obtain as a particu~
lar case from (18)

L®
Pm(l):Po—J%(i—g(;—} (19)

which coincides with the formula of [2]. If the active stratum does not have any connections with the over-
lying stratum (o =0), then (19) takes the form

t
Poy)=ps — BZ—L {20)

For the case in which the pressure in the gallery is given, the equations for finding d and dq, take
the form

Eh2 (Do — Pa)
dp= =2 \ (21)
k* 3 __ 3 2 2 % ___ 2 3
dga= FI‘L{PO (as— a1) + Poo R 3L~zal - Lal J— p*[(az—* a3) — i L L -+ E%fga—lsj}dt (22)
Using (15), (21}, and (22}, we obtain
it — 2Ldp,, (23)
T PooB (1) —3apo (@ — an) F p [3% (a3 — ay) — B (x)]
B(x)— 32 (aZQL— ar”) n g_ 32 (afL—; ;%)
The limiting value of the pressure at the outer impermeable boundary is found in the form
Poo = Px B (a) [B (a) — 3a (ay — a;)] + 3B (0) Pooth {2z — ay) (24)
For the case in which the flnid leaks along the entire length of the relatively impermeable layer
(@=L, a; =0, p;=0), (24) takes the form [2]
o P o L2
Pos :3+:¢L2(3_7/\ (25)
Integration of (23) from 0 to t and from Py t0 P, Tespectively, yields
32 (as — — B
Poo (1) = p, [1 ___jgz(l)“ax)] (\1 — exp ——AL;M) (26)
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If the active stratum is connected with the overlying stratum through a large number of locally per-

meable zones, the solution will be obtained in the form

—B it
(14— oxp =22%) (27)

31 (@ — @)+ -+ (2, — Gy y)]
Poo(t)zp*{I_ : B(g) : s }

Here n takes positive integral values. For the case of fluid crossflow along the entire length of the

relatively impermeable layer (ay=0, ay3=L, ..., asn =asm-1), we have the solution obtained previously [2]

2 — (L2 3
pm(z):g—f%ﬁ(\:%—oiz—) ['I—GXp(x—Lj:—-)it] (28)

However, if there is no connection between the active and overlying strata, (28) takes the form

— 3ut
Poo="Px |\l —exp Iz )

Thus, we have obtained simple formulas for determining the moving boundary location at any time

and the pressure variation at the outer impermeable boundary.

10.
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